# Radioactive isotope used in geological dating

For example, the decay of potassium-40 to argon-40 is used to date rocks older than 20,000 years, and the decay of uranium-238 to lead-206 is used for rocks older than 1 million years.

Radiocarbon dating measures radioactive isotopes in once-living organic material instead of rock, using the decay of carbon-14 to nitrogen-14.

To see how we actually use this information to date rocks, consider the following: Usually, we know the amount, N, of an isotope present today, and the amount of a daughter element produced by decay, D*.

By definition, D* = N-1) (2) Now we can calculate the age if we know the number of daughter atoms produced by decay, D* and the number of parent atoms now present, N.

Most directly measure the amount of isotopes in rocks, using a mass spectrometer.These rates of decay are known, so if you can measure the proportion of parent and daughter isotopes in rocks now, you can calculate when the rocks were formed.Because of their unique decay rates, different elements are used for dating different age ranges.Prior to 1905 the best and most accepted age of the Earth was that proposed by Lord Kelvin based on the amount of time necessary for the Earth to cool to its present temperature from a completely liquid state.Although we now recognize lots of problems with that calculation, the age of 25 my was accepted by most physicists, but considered too short by most geologists. Recognition that radioactive decay of atoms occurs in the Earth was important in two respects: Principles of Radiometric Dating Radioactive decay is described in terms of the probability that a constituent particle of the nucleus of an atom will escape through the potential (Energy) barrier which bonds them to the nucleus.   